ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА Д 002.278.01, СОЗДАННОГО НА БАЗЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО УЧРЕЖДЕНИЯ НАУКИ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ НАУЧНЫЙ ЦЕНТР АГРОБИОТЕХНОЛОГИЙ РОССИЙСКОЙ АКАДЕМИИ НАУК МИНИСТЕРСТВА НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ, ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЕНОЙ СТЕПЕНИ КАНДИДАТА НАУК

аттестационное деле	No	
решение дис	сертационного совета от 26.05.2022 г. №5	50

О присуждении Яковлеву Даниилу Александровичу, гражданину Российской Федерации, ученой степени кандидата технических наук.

Диссертация «Энергетическая оценка сошников при работе посевных агрегатов в условиях различной влажности почвы степной зоны Сибири» по специальности 05.20.01 — «Технологии и средства механизации сельского хозяйства» принята к защите «18» марта 2022 г., (протокол заседания №48) диссертационным советом Д 002.278.01, созданным на базе Федерального государственного бюджетного учреждения науки Сибирский федеральный научный центр агробиотехнологий Российской академии наук Министерства науки и высшего образования РФ, 630501, Новосибирская область, Новосибирский район, р.п. Краснообск, СФНЦА РАН, а/я 463, приказ №364/нк от 20.12.2018 г.

Соискатель – Яковлев Даниил Александрович, «17» ноября 1994 года рождения.

В 2016 году окончил Федеральное государственное бюджетное образования образовательное учреждение высшего «Иркутский государственный аграрный университет им. А.А. Ежевского». В 2018 году Федерального закончил магистратуру государственного бюджетного образовательного учреждения образования «Иркутский высшего

государственный аграрный университет им. А.А. Ежевского». В 2021 году окончил аспирантуру Федерального государственного бюджетного «Алтайский образовательного учреждения высшего образования государственный аграрный университет» по направлению подготовки 35.06.04 «Технологии, средства механизации энергетическое И оборудование в сельском, лесном и рыбном хозяйстве».

работает ассистентом кафедры «Сельскохозяйственная техника и технологии» инженерного факультета в Федеральном государственном бюджетном образовательном учреждении высшего образования «Алтайский государственный аграрный университет», Министерство сельского хозяйства Российской Федерации.

Диссертация выполнена на кафедре «Сельскохозяйственная техника и технологии» Федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный аграрный университет», Министерство сельского хозяйства Российской Федерации.

Научный руководитель — доктор технических наук, Беляев Владимир Иванович, Федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государственный аграрный университет», инженерный факультет, кафедра «Сельскохозяйственная техника и технологии», заведующий кафедрой.

Официальные оппоненты:

Раднаев Даба Нимаевич доктор технических наук, доцент, ФГБОУ ВО «Бурятская государственная сельскохозяйственная академия имени В.Р. Филиппова», кафедра «Механизация сельскохозяйственных процессов», профессор кафедры;

Кокошин Сергей Николаевич кандидат технических наук, доцент, ФГБОУ ВО «Государственный аграрный университет Северного Зауралья», кафедра «Технические системы в агропромышленном комплексе», доцент кафедры

дали положительные отзывы на диссертацию.

Ведущая организация – Федеральное государственное бюджетное научное учреждение «Омский аграрный научный центр», г. Омск в своем положительном отзыве, подписанном Кем Александром Александровичем, технических наук, доцентом, кандидатом отдел механизации исследований, заведующим экономических отделом, указала, ЧТО диссертация Яковлева Д.А. представляет собой законченную научноквалификационную работу, которая по уровню и содержанию соответствует требованиям Положения о присуждении ученых степеней. Результаты, изложенные в работе, представляют ценность для науки и техники в области сельского хозяйства, а её автор, Яковлев Даниил Александрович заслуживает присуждения учёной степени кандидата технических наук по специальности 05.20.01 – «Технологии и средства механизации сельского хозяйства».

Соискатель имеет 24 опубликованных работы, в том числе по теме диссертации опубликовано 14 работ, из них в рецензируемых научных изданиях опубликовано 5 работ.

Недостоверные сведения об опубликованных соискателем работах в диссертации отсутствуют. Общий объем публикаций 4,3 печатных листа, из которых 3,2 печатных листа принадлежат лично соискателю.

Наиболее значимые научные работы по теме диссертации:

- 1. Яковлев Д.А. Обоснование рациональных параметров сошниковой группы сеялки СЗС-2.1 для прямого посева / Д.А. Яковлев, В.И. Беляев, Г.Н. Поляков // Вестник алтайского государственного аграрного университета. 2019. № 9 (179). С. 131-135.
- 2. Яковлев Д.А. Сравнительная энергооценка рабочих органов посевных машин для прямого посева в условиях различного увлажнения почв / Д.А. Яковлев, В.И. Беляев, Р.Е. Прокопчук // Вестник алтайского государственного аграрного университета. 2020. № 6 (188). С. 144-150.

- 4. Яковлев Д.А. Энергооценка работы посевных агрегатов в условиях различного увлажнения почв / Д.А. Яковлев, В.И. Беляев // Вестник НГИЭИ. 2021. № 9 (124). С. 18-27.
- 5. Яковлев Д.А. Теоретическое обоснование параметров и режимов работы посевных агрегатов в условиях различного увлажнения почв / Д.А. Яковлев, В.И. Беляев // Вестник Рязанского государственного агротехнологического университета. 2021. Т.13. № 3. С. 128-134.
- 6. Belyaev V.I. The influence of the sowing coulters type on the seeding quality and the spring wheat yield / V.I. Belyaev, V.V. Vol'nov, D.A. Iakovlev and others // IOP conference series: materials science and engineering. 2020. Vol. 941 DOI https://doi.org/10.1088/1757-899X/941/1/012042.
- 7. Патент на изобретение № 2758720, МПК А01С 7/00 (2006.01), А01С 7/20 (2006.01). Способ посева зерновых культур и сошник для бороздкового посева семян / Д.А. Яковлев; заявитель и патентообладатель Д.А. Яковлев. № 2021102163; заявл. 29.01.2021; опубл. 01.11.2021 // Изобретения и полезные модели. Официальный бюллетень федеральной службы по интеллектуальной собственности (РОСПАТЕНТ) бюл. № 31.
- 8. Яковлев Д.А. Рациональное комплектование посевных машин рабочими органами для условий повышенного увлажнения почв / Д.А. Яковлев, В.И. Беляев, Г.Н. Поляков // Информационные технологии, системы и приборы в АПК: матер. 7-ой междунар. науч. практ. конф. Новосибирск-Краснообск: СибФТИ, 2018. С. 497-500.
- Поляков Г.Н. Распределение семян по глубине при посеве различными типами сошников / Г.Н. Поляков, С.Н. Шуханов, Д.А. Яковлев // Актуальные вопросы аграрной науки. 2019. № 31. С. 13-22.
- 10. Беляев В.И. Перспективы применения технологий прямого посева в Алтайском крае / В.И. Беляев, А.А. Хижников, Д. А. Яковлев // Аграрная наука сельскому хозяйству: сбор. матер. 15-ой Междунар. науч.-практ. конф. Барнаул: Алтайский ГАУ, 2020. № 2. С. 14-16.

На диссертацию и автореферат поступили отзывы:

- 1. Отзыв ФГБОУ ВО Ярославская ГСХА, подписанный профессором кафедры механизации сельскохозяйственного производства, д-р техн. наук, профессором Юрковым Михаилом Михайловичем. Отмечено 2 замечания: не совсем понятна методика получения данных по тяговым испытаниям, какой работомер использовался, как согласовывался с расходомером топлива и скоростью движения; в поверхностях отклика расхода топлива от влажности и скорости не представлены значения производительности агрегата.
- 2. Поступил отзыв от ООО «Фармет», подписанный генеральным директором, канд. техн. наук. Пугачевым Пётром Михайловичем. Отмечено 3 замечания: в третьей главе в полевом опыте влажность почвы определяли с помощью электронного влагомера, а следовало определять стандартным методом (ГОСТ); не приведена оценка диапазона влажности почвы степной зоны Сибири в период сева зерновых культур; поскольку стандартные отклонения от глубины заделки семян зависят не только от влажности почвы, но и от скорости движения посевного агрегата, то на рисунке 6 следует указать, при какой скорости сеялки были получены данные зависимости.
- 3. Отзыв ООО КЛААС Восток, региональный представитель, подписанный канд. техн. наук Степановым Алексеем Николаевичем. Отмечено 2 замечания: в тексте автореферата указано, что посевной агрегат был сформирован на базе трактора NH Т8.410 номинальной мощностью двигателя 275 кВт и сеялки шириной захвата 2,1 метра с анкерными и лаповыми сошниками. В этой связи непонятно, почему для указанной сеялки был подобран трактор с достаточно мощным двигателем, который способен работать с сеялками аналогичного типа с шириной захвата от 9 метров и более; из автореферата не ясно, что послужило основанием для выбора рабочей скорости движения агрегата в диапазоне от 4 до 10 км/ч. В современных условиях эксплуатации посев осуществляется при рабочей скорости движения агрегата от 10 до 15 км/ч.

- 4. Отзыв ИАЭП филиал ФГБНУ ФНАЦ ВИМ, подписанный ведущим научным сотрудником отдела агроэкологии в растениеводстве, д-р техн. наук, профессором Джабборовым Нозимом Исмоиловичем. Отмечено 2 замечания: задачи исследований (стр.4 автореферата) предусматривают обоснование рациональных параметров и режимов работы посевных агрегатов в условиях различного уровня влажности почвы. На стр. 14 и 15 приведены материалы, на основе которых обоснованы рациональные значения скорости посевного агрегата и расхода топлива в зависимости от влажности почвы. Не совсем понятно, обоснованы ли какие-нибудь параметры и нагрузочные режимы работы посевного агрегата; отмечена не совсем удачная корреспонденция материала задач исследований 4, а выводов 8. С целью повышения значимости выводов их можно было объединить и оставить 4 вывода, которые отвечали бы каждой поставленной задаче.
- 5. Отзыв ФГБНУ «ВНИИТиН», подписанный главным научным сотрудником, и.о. заведующего лабораторией «Использования машиннотракторных агрегатов», д-р техн. наук, доцентом Балашовым Александром научным Владимировичем И ведущим сотрудником лаборатории «Использования машинно-тракторных агрегатов», канд. техн. наук Стрыгиным Сергеем Петровичем. Отмечено 5 замечаний: в автореферате приведены известные классические формулы (18-21, 23); во второй главе отсутствует схема сил, действующих на сошник сеялки, что затрудняет восприятие процесса работы посевного агрегата; вызывает сомнение трактора с мощностью 275 кВт использование двигателя В агрегатировании с одной сеялкой СТС-2,1; при определении экономии дизельного топлива за посевную на один посевной агрегат в 0,8 тонн не приведены конкретный размер обрабатываемой площади, используемый агрегат и продолжительность его работы; по тексту встречаются неудачные («Методика обоснования параметров посевных выражения агрегатов позволила повысить их производительность ...»).

- 6. Отзыв от Агротехнологической академии ФГАОУ ВО «КФУ им. В.И. Вернадского», подписанный профессором кафедры технических систем в агробизнесе, д-р техн. наук, профессором Бабицким Леонидом Фёдоровичем. Отмечено 2 замечания: упрощенная схема полевого опыта на рисунке 2 автореферата (стр. 12) не отражает конкретного диапазона изменения рабочей скорости движения посевного агрегата с указанием ее размерности; желательно четко сформулировать научную гипотезу, на подтверждение которой направлено данное научное исследование.
- 7. Отзыв ФГБОУ ВО Тверская ГСХА, подписанный заведующим кафедрой технологических и транспортных машин и комплексов, д-р техн. наук, профессором Голубевым Вячеславом Викторовичем и доцентом кафедры технологических и транспортных машин и комплексов, канд. техн. наук Кудрявцевым Андреем Васильевичем. Отмечено 1 замечание: ссылаясь методы, предложенные Г.Н. Синеоковым, автором теоретически определено тяговое сопротивление сошников сеялки с учётом уровня влажности почвы (стр. 7), однако не ясно, на сколько сходятся данные с экспериментальными значениями, а в частности вывод 6 (стр. 17) содержит выражение «...величина расхода топлива двигателя трактора... на 3...5 % ниже». Как оценивался фактический расход топлива и теоретически определённое сопротивление, пределах ошибки тяговое ещё И В эксперимента?
- 8. Отзыв ФГБОУ ВО Южно-Уральского ГАУ, подписанный директором института агроинженерии, д-р техн. наук, доцентом Шепелёвым Сергеем Дмитриевичем. Отмечено 2 замечания: не указано влияния типа почвы на расход топлива тракторного двигателя; непонятно, почему сравнивается производительность посевных агрегатов с различной рабочей шириной захвата (стр. 16).
- 9. Отзыв ФГБОУ ВО Башкирский ГАУ, подписанный доцентом кафедры сельскохозяйственных и технологических машин, канд. техн. наук Мухаметдиновым Айратом Мидхатовичем и заведующим кафедрой

сельскохозяйственных и технологических машин, д-р техн. наук, профессором Мударисовым Салаватом Гумеровичем. Отмечено 1 замечание: из автореферата стр. 12 не ясно, каким образом добивались влажности 15, 20, 25, 30% при проведении экспериментальных исследований в ООО КХ «Партнер» Михайловского района Алтайского края.

- 10. Отзыв ФГБОУ ВО Саратовский ГАУ, подписанный доцентом кафедры «Техническое обеспечение АПК», д-р техн. наук Старцевым Александром Сергеевичем и доцентом кафедры «Техническое обеспечение АПК», канд. техн. наук Данилиным Андреем Владимировичем. Отмечено 4 замечания: автор не приводит в автореферате научного обоснования исключения из исследований дисковых сошников, хотя в теме заявлено «энергетическая оценка сошников при работе посевных агрегатов...»; по агротехническим требованиям при посеве зерновых культур влажность почвы не должна превышать 22%, а автор рекомендует энергетически оптимальный уровень влажности 23,4 и 23,6%; из автореферата не ясно: посев какой зерновой культуры и на какую глубину осуществляли при проведении диссертационного исследования; на стр. 10, 11 и 13 в выражениях (24), (29) и (31), рабочая скорость движения Vp обозначена без индекса «р».
- 11. Отзыв ФГБОУ ВО ИРНИТУ, подписанный профессором кафедры «Автомобильный транспорт», д-р техн. наук, доцентом Кривцовым Сергеем Николаевичем. Отмечено 2 замечания: в автореферате на стр. 11 приведены формулы 25 28. Из содержания автореферата не ясно, кем были получены эти зависимости? И если они получены автором, то почему приведены во второй главе, а не в четвертой?; рис. 3 (стр. 13 автореферата) и рис. 4 (стр. 14 автореферата), по сути дублируют друг друга.
- 12. Отзыв ФГБОУ ВО АлтГТУ, пописанный заведующим кафедрой «Теоретическая и прикладная механика», д-р техн. наук, доцентом Поддубным Владимиром Ивановичем и доцентом кафедры «Прикладная математика», канд. техн. наук Ненайденко Александром Степановичем.

Отмечено 2 замечания: пункт 1 заключения не несет информации о практической ценности и научной новизне – является констатирующим; непонятна целесообразность включения в автореферат общеизвестных формул в раздел «Зависимость тягового сопротивления сеялки и расхода топлива».

13. Отзыв ФГБОУ ВО Кубанский ГАУ, пописанный заведующим кафедрой «Тракторы, автомобили и техническая механика», д-р техн. наук, доцентом Курасовым Владимиром Станиславовичем. Отмечено 2 замечания: 12 указаны критерии, которым стр. не ПО ДЛЯ проведения экспериментальных исследований был выбран трактор New Holland T8.410; в формуле (2) для определения продольной слагающей силы тяги анкерного и лапового сошников допущена ошибка. Сопротивление почвы сжатию затылком затупившегося лезвия должно обозначаться как R_{3x} , а не R_3 .

14. Отзыв ФГБОУ ВО Нижегородская ГСХА, пописанный деканом инженерного факультета, профессором кафедры «Эксплуатация мобильных энергетических средств и сельскохозяйственных машин», д-р техн. наук, профессором Пасиным Александром Валентиновичем и аспирантом кафедры «Эксплуатация мобильных энергетических средств и сельскохозяйственных машин» Егоровым Ярославом Игоревичем. Отмечено 4 замечания: формула (2) на стр. 7 содержит параметр R_3 – далее по тексту объяснения формулы R_{3x} (сопротивление следует параметр ПОЧВЫ сжатию затупившегося лезвия) – возможно опечатка. Формула (3) также включает R_3 при этом Формулы (7; 8; 9) включают в себя параметр R_{3x} ; рисунок 3 (стр. 13) красивый, но практически неудобный, для понимания лучше схема, как рисунок 4 (стр. 14) или табличная форма. Возможно, для сравнения с тракторами других моделей (различной мощности, разных тяговых классов – в соответствии с разделом «Перспективы дальнейшей разработки темы» стр. 18), лучше представить расход топлива не в Γ/c , а Γ/m^2 или $\kappa\Gamma/\Gamma a$ (грамм на квадратный метр засеянного поля или килограмм на гектар); на стр. 16 экономические показатели сразу выражены в руб/га, но с учетом

изменчивости цен, желательно отобразить экономический эффект в натуральных показателях, таких как килограмм топлива на гектар засеянного поля. Суммарная экономия топлива за посевную (0,8 тонн) дана без привязки к засеянной площади; в разделе «Рекомендации к производству» (стр. 18) пункт 3 — упоминаются дисковые сошники, а именно: «дисковые сошники не могут работать эффективно в данных условиях, поскольку на них налипает почва и возрастает тяговое сопротивление, вследствие чего повышается расход топлива и снижается качество посева», при этом в тексте автореферата отсутствуют данные по испытанию дисковых сошников, расходу топлива для их использования при различной влажности почвы и отклонения от установленной глубины заделки семян.

15. Отзыв РУП «НПЦ НАН Беларуси по механизации сельского хозяйства», пописанный генеральным директором, канд. техн. наук доцентом Комлач Дмитрием Ивановичем и ведущим научным сотрудником лаборатории обработки почвы и посева, канд. техн. наук доцентом Лепешкиным Николаем Даниловичем. Отмечено 3 замечания: из реферата не ясно, почему исследования проводились только для диапазона скоростей 4— 10 км/ч, когда, например, скорость посевного комплекса «Кузбасс», который упоминается в работе 12, составляет 8 – 13 км/ч. В перспективе, с учетом зарубежного опыта, скорость посевных агрегатов будет увеличиваться до 15 – 20 км/ч; из формулы (29) видно, что одним из основных показателей, влияющих на расход топлива, является глубина обработки, однако, в автореферате не указано, при какой глубине обработки проводились опыты; поскольку применяемые на посевных агрегатах анкерные и лаповые сошники могут иметь различные конструктивные параметры и устанавливаться с разным междурядьем, то данные агрегаты при одной и той же ширине захвата будут иметь разные тяговые сопротивления, расход топлива и цену. Поэтому при определении технико-экономических показателей агрегата следовало бы указать не только ширину агрегата, но и его марку.

16. Отзыв ФГБОУ ВО «МГУ им. Н.П. Огарева», пописанный заведующим кафедрой мобильных энергетических средств и сельскохозяйственных машин им. профессора А.И. Лещанкина, канд. техн. наук доцентом Купряшкин Владимир Федорович и доцентом кафедры мобильных энергетических средств и сельскохозяйственных машин им. профессора А.И. Лещанкина, канд. техн. наук доцентом Овчинниковым Владимиром Анатольевичем. Отмечено 2 замечания: из автореферата не понятно, каково количество и степень влияния факторов на основной оценочный показатель, а также интервалы их варьирования; автор не указал, по какой методике проводился технико-экономический расчет.

Все отзывы положительные. В них отмечается актуальность, научная новизна, практическая значимость и завершенность выполненной работы. Содержатся рекомендации о присуждении Яковлеву Д.А. ученой степени кандидата технических наук по специальности 05.20.01 — «Технологии и средства механизации сельского хозяйства».

Выбор официальных оппонентов и ведущей организации обосновывается высокой компетентностью и значительным вкладом в техническую отрасль науки, наличием публикаций в соответствующей сфере исследования и способностью определить научную и практическую ценность диссертации д-ра техн. наук Раднаева Даба Нимаевича, канд. техн. наук Кокошина Сергея Николаевича и сотрудников ФГБНУ Омский АНЦ.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

разработана новая научная идея, обогащающая научную концепцию энергетической оценки работы сошников в условиях различной влажности почвы на основании расхода топлива тракторного двигателя,

предложен нетрадиционный подход к энергетической оценке сошников посевных агрегатов в условиях различной влажности почвы,

доказано наличие зависимостей расхода топлива тракторного двигателя от влажности почвы, типа сошников и рабочей скорости движения посевного агрегата,

введены новые понятия коэффициентов, учитывающих изменение расхода топлива от влажности почвы для основных типов сошников.

Теоретическая значимость исследования обоснована тем, что:

доказаны положения, вносящие вклад в расширение представлений об энергетических затратах сошников при работе посевных агрегатов в условиях различной влажности почвы,

применительно к проблематике диссертации результативно использован (эффективно, то есть с получением обладающих новизной результатов) использован комплекс существующих базовых методов исследования, в том числе известные закономерности математического анализа и методы математического моделирования,

изложены аргументы по энергетической оценке анкерного и лапового сошников в зависимости от влажности почвы,

раскрыты существенные проявления теории зависимости тягового сопротивления почвы от параметров и режимов работы посевных агрегатов при различной влажности почвы,

изучены причинно-следственные связи, влияющие на энергетические затраты при работе посевных агрегатов,

проведена модернизация существующей математической модели посевного агрегата для оптимизации его параметров и режимов работы в различных условиях эксплуатации.

Значение полученных соискателем результатов исследования для практики подтверждается тем, что:

разработана и внедрена методика обоснования рациональных параметров и режимов работы посевных агрегатов при эксплуатации в условиях различной влажности почвы (ООО КХ «Партнер», Михайловский район Алтайского края и ООО «Агроцентр», г. Барнаул); зависимости для определения тягового

сопротивления анкерного и лапового сошников с учётом уровня влажности почвы и расхода топлива тракторного двигателя от уровня влажности почвы, выбранного типа сошника и рабочей скорости движения посевного агрегата (ФГБОУ ВО Алтайский ГАУ, г. Барнаул),

определены перспективы практического использования теоретических результатов исследования для обеспечения снижения энергетических затрат на выполнении посевных работ, за счет рационального выбора типа сошников и рабочих скоростей движения посевных агрегатов,

создана система практических рекомендаций производству, направленных на снижение энергетических затрат при посеве зерновых культур в условиях различной влажности почвы,

представлены предложения по дальнейшему совершенствованию методики обоснования параметров и режимов работы посевных агрегатов с различными рабочими органами.

Оценка достоверности результатов исследования выявила:

для экспериментальных работ результаты получены на сертифицированном оборудовании с использованием современных методик исследований. Воспроизводимость результатов исследований подтверждена высокой сходимостью теоретических и экспериментальными данных,

теория построена на известных проверяемых данных и положениях, теоретической, земледельческой механики и методах математического моделирования, использовании современных прикладных программ и согласуется с опубликованными экспериментальными данными по теме диссертации,

идея базируется на анализе практики возделывания зерновых культур и обобщении передового опыта в области эксплуатации посевных и почвообрабатывающих агрегатов,

использованы сравнение авторских данных и данных, полученных ранее по рассматриваемой тематике отечественных и зарубежных авторов: Л.Е. Агеев, П.У. Бахтин, В.И. Беляев, В.П. Горячкин, А.Н. Зеленин, С.А. Иофинов, Н.А.

Качинский, Ю.К. Киртбая, В.С. Красовских, А.Б. Лурье, Б.В. Нестерводский, И.П. Панов, Г.Н. Синеоков, В.В. Соколов, В.И. Фортуна, Н.В. Щучкин, G.P. Lafond, K. Terzaghi,

установлено качественное совпадение авторских результатов с результатами, представленными в независимых источниках, связанных с вопросами энергетической оценки посевных и почвообрабатывающих агрегатов,

использованы современные методики сбора и обработки исходной информации с применением измерительного оборудования и информационных технологий, методов и программ обработки экспериментальных данных.

Личный вклад соискателя состоит во включенном участии на всех этапах процесса подготовки диссертации, непосредственном участии соискателя в получении исходных данных и научных экспериментах, личное участие в апробации результатов исследования, обработке и интерпретации экспериментальных данных, выполненных лично автором либо при его участии, подготовка основных публикаций по выполненной работе.

В ходе защиты диссертации были высказаны следующие критические замечания: что Вы понимаете под энергетической оценкой? Какие именно коэффициенты вы ввели в математическую модель? Где дисковые сошники, где обоснование того, что их не нужно рассматривать? Почему вы ограничиваетесь скоростью движения посевных агрегатов 8 – 10 км/ч, тогда как в современных условиях оптимальной скоростью посева является 12 км/ч? Почему в четвёртой задаче исследования вы ограничиваетесь лишь оценкой экономической эффективности результатов исследования? На листе 8 в формулу 20 подставьте единицы измерения, как вы получили кН? Как вы доказали, что влажность существеннее остальных факторов влияет на энергозатраты?

Соискатель Яковлев Д.А. ответил на задаваемые ему в ходе заседания вопросы и привел собственную аргументацию по материалам и результатам научных исследований.

На заседании 26.05.2022 года диссертационный совет Д 002.278.01 принял решение: за решение научной задачи, связанной со снижением энергетических затрат при выполнении посевных работ счет рационального выбора типа сошников и рабочих скоростей движения посевных агрегатов и разработку методики обоснования рациональных параметров и режимов работы посевных агрегатов при эксплуатации в условиях различной влажности почвы, имеющих существенное значение для развития сельского хозяйства Сибири, присудить Яковлеву Д.А. ученую степень кандидата технических наук.

При проведении тайного голосования диссертационный совет в количестве $\underline{17}$ человек, из них $\underline{11}$ докторов наук по специальности 05.20.01- «Технологии и средства механизации сельского хозяйства», участвовавших в заседании, из $\underline{19}$ человек, входящих в состав совета, дополнительно введены на разовую защиту $\underline{0}$ человек, проголосовали: за $\underline{17}$, против $\underline{0}$, недействительных бюллетеней 0.

Председатель диссертационного совета

Ученый секретарь диссертационного совета Н.М. Иванов

Н.Н. Назаров 26.05.2022 г.